352 research outputs found

    Memorable messages that shape student-athletes’ perceptions of seeking mental health services

    Get PDF
    Student-athletes encounter a series of unique stressors associated with their athletic status that can compromise their well-being (Beauchemin, 2012; Brown et al., 2014; Parham, 1993; Valentine & Taub, 1999). There is evidence to suggest that demands on student-athletes’ increase their risk for experiencing certain mental and physical distress (e.g., eating disorders, anxiety, depression) (Brown et al., 2014; Etzel et al., 2006; Rice et al., 2016). Further, student-athletes are less likely to seek help from mental health professionals than their non-athlete peers (Watson, 2005). The purpose of this study was to understand the role that communication plays in socializing student-athletes, and how communication influences their perceptions of seeking mental health services. The research questions in this study were the following: 1) What are the memorable messages student-athletes receive that inform their perceptions of seeking mental health services? 2) Which sources who deliver the memorable messages have the greatest impact on student-athletes’ attitudes and perceptions of seeking mental health services? This study utilized Consensual Qualitative Research (CQR) to conduct and analyze in-depth interviews about Division I student-athletes’ experiences and context surrounding the memorable messages received, with the intention of identifying themes that capture the impact the messages have had on their help-seeking attitudes and behaviors. The current body of research provides evidence that memorable messages student-athletes received have positively and negatively influenced their attitudes and behaviors towards seeking professional help. Findings from this current study revealed that, across the two domains that directly answered the research questions, there were five general categories and seven typical categories indicating there were commonalities in the memorable messages received and significant sources who communicated them. All participants identified and recalled specific memorable messages, both positive and negative, regarding seeking mental health services; however, overall student-athletes received a higher frequency of positive messages. The common theme around the positive messages student-athletes received were some variation of “It’s ok to not be ok” while the theme around the negative messages received were rooted in sport culture norms such as “Athletes are supposed to be tough” and “You’re weak if you need help.” The significant sources who most influenced student-athletes’ perceptions of seeking mental health services were coaches and family (parents, dad, mom, sister, and uncle)

    Uneasy entry

    Get PDF
    The poems in this book center around the theme of human isolation and the desire for communication. I have used the interactions between men and women as symbols of this universal division. The poems in the first section, Connections, are primarily narrative. They explore ways in which two Individuals become aware of the distances between them, their emotional responses to this distance, and various ineffective ways in which they try to bridge the gulf they have just seen open at their feet. The second section, Domestic Lessons, deals with a more personal experience of human isolation. The third section, Caves, is an imaginative attempt to reach the sources of androgyny within the individual, an attempt to come to terms emotionally and intellectually with the knowledge of the co-existence of male and female sensibility in each of us. The aim of the poems, which could be considered rites of passage, is to revitalize and complete in an individually significant way the fragmented myths of childhood. The last section, Sharing Visions, is concerned with moments of true communion between individuals, and the implications of these accidents of grace which allow us to see life for a second through eyes other than our own

    Narrative-based computational modelling of the Gp130/JAK/STAT signalling pathway.

    Get PDF
    BACKGROUND: Appropriately formulated quantitative computational models can support researchers in understanding the dynamic behaviour of biological pathways and support hypothesis formulation and selection by "in silico" experimentation. An obstacle to widespread adoption of this approach is the requirement to formulate a biological pathway as machine executable computer code. We have recently proposed a novel, biologically intuitive, narrative-style modelling language for biologists to formulate the pathway which is then automatically translated into an executable format and is, thus, usable for analysis via existing simulation techniques. RESULTS: Here we use a high-level narrative language in designing a computational model of the gp130/JAK/STAT signalling pathway and show that the model reproduces the dynamic behaviour of the pathway derived by biological observation. We then "experiment" on the model by simulation and sensitivity analysis to define those parameters which dominate the dynamic behaviour of the pathway. The model predicts that nuclear compartmentalisation and phosphorylation status of STAT are key determinants of the pathway and that alternative mechanisms of signal attenuation exert their influence on different timescales. CONCLUSION: The described narrative model of the gp130/JAK/STAT pathway represents an interesting case study showing how, by using this approach, researchers can model biological systems without explicitly dealing with formal notations and mathematical expressions (typically used for biochemical modelling), nevertheless being able to obtain simulation and analysis results. We present the model and the sensitivity analysis results we have obtained, that allow us to identify the parameters which are most sensitive to perturbations. The results, which are shown to be in agreement with existing mathematical models of the gp130/JAK/STAT pathway, serve us as a form of validation of the model and of the approach itself

    The Genomic Signature of Crop-Wild Introgression in Maize

    Get PDF
    The evolutionary significance of hybridization and subsequent introgression has long been appreciated, but evaluation of the genome-wide effects of these phenomena has only recently become possible. Crop-wild study systems represent ideal opportunities to examine evolution through hybridization. For example, maize and the conspecific wild teosinte Zea mays ssp. mexicana, (hereafter, mexicana) are known to hybridize in the fields of highland Mexico. Despite widespread evidence of gene flow, maize and mexicana maintain distinct morphologies and have done so in sympatry for thousands of years. Neither the genomic extent nor the evolutionary importance of introgression between these taxa is understood. In this study we assessed patterns of genome-wide introgression based on 39,029 single nucleotide polymorphisms genotyped in 189 individuals from nine sympatric maize-mexicana populations and reference allopatric populations. While portions of the maize and mexicana genomes were particularly resistant to introgression (notably near known cross-incompatibility and domestication loci), we detected widespread evidence for introgression in both directions of gene flow. Through further characterization of these regions and preliminary growth chamber experiments, we found evidence suggestive of the incorporation of adaptive mexicana alleles into maize during its expansion to the highlands of central Mexico. In contrast, very little evidence was found for adaptive introgression from maize to mexicana. The methods we have applied here can be replicated widely, and such analyses have the potential to greatly informing our understanding of evolution through introgressive hybridization. Crop species, due to their exceptional genomic resources and frequent histories of spread into sympatry with relatives, should be particularly influential in these studies

    Admixture Mapping Scans Identify a Locus Affecting Retinal Vascular Caliber in Hypertensive African Americans: the Atherosclerosis Risk in Communities (ARIC) Study

    Get PDF
    Retinal vascular caliber provides information about the structure and health of the microvascular system and is associated with cardiovascular and cerebrovascular diseases. Compared to European Americans, African Americans tend to have wider retinal arteriolar and venular caliber, even after controlling for cardiovascular risk factors. This has suggested the hypothesis that differences in genetic background may contribute to racial/ethnic differences in retinal vascular caliber. Using 1,365 ancestry-informative SNPs, we estimated the percentage of African ancestry (PAA) and conducted genome-wide admixture mapping scans in 1,737 African Americans from the Atherosclerosis Risk in Communities (ARIC) study. Central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE) representing summary measures of retinal arteriolar and venular caliber, respectively, were measured from retinal photographs. PAA was significantly correlated with CRVE (ρ = 0.071, P = 0.003), but not CRAE (ρ = 0.032, P = 0.182). Using admixture mapping, we did not detect significant admixture association with either CRAE (genome-wide score = −0.73) or CRVE (genome-wide score = −0.69). An a priori subgroup analysis among hypertensive individuals detected a genome-wide significant association of CRVE with greater African ancestry at chromosome 6p21.1 (genome-wide score = 2.31, locus-specific LOD = 5.47). Each additional copy of an African ancestral allele at the 6p21.1 peak was associated with an average increase in CRVE of 6.14 µm in the hypertensives, but had no significant effects in the non-hypertensives (P for heterogeneity <0.001). Further mapping in the 6p21.1 region may uncover novel genetic variants affecting retinal vascular caliber and further insights into the interaction between genetic effects of the microvascular system and hypertension

    Advantage of rare infanticide strategies in an invasion experiment of behavioural polymorphism

    Get PDF
    Killing conspecific infants (infanticide) is among the most puzzling phenomena in nature. Stable polymorphism in such behaviour could be maintained by negative frequency-dependent selection (benefit of rare types). However, it is currently unknown whether there is genetic polymorphism in infanticidal behaviour or whether infanticide may have any fitness advantages when rare. Here we show genetic polymorphism in non-parental infanticide. Our novel invasion experiment confirms negative frequency-dependent selection in wild bank vole populations, where resource benefits allow an infanticidal strategy to invade a population of non-infanticidal individuals. The results show that infanticidal behaviour is highly heritable with genetic correlation across the sexes. Thus, a positive correlative response in male behaviour is expected when selection operates on females only and vice versa. Our results, on one hand, demonstrate potential benefits of infanticide, and on the other, they open a new perspective of correlative evolution of infanticide in females and males

    Plant Identity Influences Decomposition through More Than One Mechanism

    Get PDF
    Plant litter decomposition is a critical ecosystem process representing a major pathway for carbon flux, but little is known about how it is affected by changes in plant composition and diversity. Single plant functional groups (graminoids, legumes, non-leguminous forbs) were removed from a grassland in northern Canada to examine the impacts of functional group identity on decomposition. Removals were conducted within two different environmental contexts (fertilization and fungicide application) to examine the context-dependency of these identity effects. We examined two different mechanisms by which the loss of plant functional groups may impact decomposition: effects of the living plant community on the decomposition microenvironment, and changes in the species composition of the decomposing litter, as well as the interaction between these mechanisms. We show that the identity of the plant functional group removed affects decomposition through both mechanisms. Removal of both graminoids and forbs slowed decomposition through changes in the decomposition microenvironment. We found non-additive effects of litter mixing, with both the direction and identity of the functional group responsible depending on year; in 2004 graminoids positively influenced decomposition whereas in 2006 forbs negatively influenced decomposition rate. Although these two mechanisms act independently, their effects may be additive if both mechanisms are considered simultaneously. It is essential to understand the variety of mechanisms through which even a single ecosystem property is affected if we are to predict the future consequences of biodiversity loss

    Multiplex PCR technique could be an alternative approach for early detection of leprosy among close contacts - a pilot study from India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Implementation of Multi drug Therapy (MDT) regimen has resulted in the decline of the total number of leprosy cases in the world. Though the prevalence rate has been declining, the incidence rate remains more or less constant and high in South East Asian countries particularly in India, Nepal, Bangladesh, Pakistan and Srilanka. Leprosy, particularly that of multibacillary type spreads silently before it is clinically detected. An early detection and treatment would help to prevent transmission in the community. Multiplex PCR (M-PCR) technique appears to be promising towards early detection among contacts of leprosy cases.</p> <p>Methods</p> <p>A total of 234 paucibacillary (PB) and 205 multibacillary (MB) leprosy cases were studied in a community of an endemic area of Bankura district of West Bengal (Eastern India). They were assessed by smear examination for acid-fast bacilli (AFB) and M-PCR technique. These patients were treated with Multidrug Therapy (MDT) as prescribed by WHO following detection. A total of 110 MB and 72 PB contacts were studied by performing M-PCR in their nasal swab samples.</p> <p>Results</p> <p>83.4% of MB patients were observed to be positive by smear examination for AFB and 89.2% by M-PCR. While 22.2% of PB patients were found to be positive by smear examination for AFB, 80.3% of these patients were positive by M-PCR. Among leprosy contacts (using M-PCR), 10.9% were found to be positive among MB contacts and 1.3% among PB contacts. Interestingly, two contacts of M-PCR positive MB cases developed leprosy during the period of two years follow up.</p> <p>Conclusion</p> <p>The M-PCR technique appears to be an efficient tool for early detection of leprosy cases in community based contact tracing amongst close associates of PB and MB cases. Early contact tracing using a molecular biology tool can be of great help in curbing the incidence of leprosy further.</p

    Filling Kinetic Gaps: Dynamic Modeling of Metabolism Where Detailed Kinetic Information Is Lacking

    Get PDF
    Integrative analysis between dynamical modeling of metabolic networks and data obtained from high throughput technology represents a worthy effort toward a holistic understanding of the link among phenotype and dynamical response. Even though the theoretical foundation for modeling metabolic network has been extensively treated elsewhere, the lack of kinetic information has limited the analysis in most of the cases. To overcome this constraint, we present and illustrate a new statistical approach that has two purposes: integrate high throughput data and survey the general dynamical mechanisms emerging for a slightly perturbed metabolic network.This paper presents a statistic framework capable to study how and how fast the metabolites participating in a perturbed metabolic network reach a steady-state. Instead of requiring accurate kinetic information, this approach uses high throughput metabolome technology to define a feasible kinetic library, which constitutes the base for identifying, statistical and dynamical properties during the relaxation. For the sake of illustration we have applied this approach to the human Red blood cell metabolism (hRBC) and its capacity to predict temporal phenomena was evaluated. Remarkable, the main dynamical properties obtained from a detailed kinetic model in hRBC were recovered by our statistical approach. Furthermore, robust properties in time scale and metabolite organization were identify and one concluded that they are a consequence of the combined performance of redundancies and variability in metabolite participation.In this work we present an approach that integrates high throughput metabolome data to define the dynamic behavior of a slightly perturbed metabolic network where kinetic information is lacking. Having information of metabolite concentrations at steady-state, this method has significant relevance due its potential scope to analyze others genome scale metabolic reconstructions. Thus, I expect this approach will significantly contribute to explore the relationship between dynamic and physiology in other metabolic reconstructions, particularly those whose kinetic information is practically nulls. For instances, I envisage that this approach can be useful in genomic medicine or pharmacogenomics, where the estimation of time scales and the identification of metabolite organization may be crucial to characterize and identify (dis)functional stages
    corecore